
Noise-seeded spatiotemporal modulation instability in normal dispersion

D. Salerno,1,2 O. Jedrkiewicz,1 J. Trull,3 G. Valiulis,4 A. Picozzi,5 and P. Di Trapani1

1INFM e Dipartimento di Fisica e Matematica, Universitá dell’Insubria, Via Valleggio 11, 22100 Como, Italy
2Facoltá of Scienze, Universitá di Milano, Via Celoria 16, 20132 Milano, Italy

3Departament de Fisica i Enginyeria Nuclear C/ Colom 1, Universitat Politecnica de Catalunya, 08222 Terrassa (Barcelona) Spain
4Department of Quantum Electronics, Vilnius University, Sauletekio 9-2040 Vilnius, Lithuania

5CNRS, Laboratoire de Physique de la Matire Condense, Université de Nice, France
(Received 21 May 2004; published 22 December 2004)

In optical second-harmonic generation with normal dispersion, the virtually infinite bandwidth of the un-
bounded, hyperbolic, modulational instability leads to quenching of spatial multisoliton formation and to the
occurrence of a catastrophic spatiotemporal breakup when an extended beam is left to interact with an ex-
tremely weak external noise with a coherence time much shorter than that of the pump.
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The noise-seeded instability of extended wave packets
(WP) in conservative evolutional nonlinear systems is a gen-
eral and relevant phenomenon in wave physics, whose main
manifestations are the appearance of regular modulations,
wave breakup and, eventually, localized or soliton-like sub-
structures. The theory used for the description and interpre-
tation of the resulting rich phenomenology is that of the
modulational instability(MI ) of plane and monochromatic
waves, extensively introduced in the context of gravity
waves in deep waters[1] and applied for several different
systems including plasmas[2], electric circuits[3], Bose-
Einstein condensates(BEC) [4] and, of course, optics[5].
The usually addressed MI signature is thepreferential noise
amplification at a given, intensity-dependent (spatial or tem-
poral) frequency, which causes regular modulation in the di-
rect space and sidebands in the spectral domain. This feature
suitably describes the MI of both one-dimensional(1D) sys-
tems and of multidimensional “elliptical” ones, i.e., those
supporting equisign linear phase modulation in all the avail-
able dimensions. However, it is generally not adequate for
“hyperbolic” systems, where opposite signs occur for differ-
ent dimensions. The elliptical is the most frequently encoun-
tered regime in the case of matter waves in isotropic media.
The hyperbolic, in contrast, is the typical case of optical WPs
in normally dispersive bulk media, diffraction, and chromatic
dispersion leading in this case to linear phase modulations
with opposite signs. Recently, dispersion-management tech-
niques based on the use of periodic potentials[6] have made
the hyperbolic regime of great interest also for the BEC
waves.

As clearly pointed out in a theoretical analysis of hyper-
bolic MI performed for Kerr nonlinearity in optics[7,8], and
also evident from the analysis of theXs2d-driven MI [9], the
the key feature that distinguishes the hyperbolic(normal)
from the elliptic(anomalous) instability regime is thatthe MI
gain profile in the k-v space is unboundedin the first (and
only in the first) case. Indeed, in the frame of the usually
adopted parabolic approximation for the material dispersion,
we should say thatany fluctuation with arbitrarily large spa-
tial and temporal frequency shift with respect to the carrier
mode has to be amplified, provided that both shifts lie on the
suitable hyperbolic surface in the k-v domain.

The unbounded feature of the hyperbolic MI raises two
relevant questions:(i) the first concerns the interpretation of
the number of studies regardingspatial MI in multidimen-
sional systems. Indeed, following an experimental MI dem-
onstration in(anomalous dispersive) 1D-temporal optical fi-
bers[10], a number of experiments have been performed in
multidimensional (i.e., in planar wave guides or in bulk
samples) normal-dispersion materials, addressing the 1D
spatial breakup of extended beams driven by quadratic
[11,12] as well as cubic[13] ultrafast nonlinear response.
Surprisingly enough, the results were interpreted in terms of
the direct spatial analogous of the temporal MI of above, as
if the temporal degree of freedom and so the hyperbolic na-
ture of the instability, had not taken any part in the process.
(ii ) The second question concerns the scenario that one
should expect when the system interacts with a very broad-
band(i.e., virtually d-correlated) noise. In this case, in fact,
the unbounded feature of the MI gain should lead one to
forecast a catastrophic break in the spatio temporal(ST) do-
main (e.g., down to the numerical grid in calculations, in the
quoted approximation), no matter how weak the input noise
is. We note that the possible occurrence of such catastrophic
dynamics has never been considered in the literature. In fact,
hyperbolic MI has been studied only for the case of bell-
shaped, noise-free, input wave packets, e.g., for investigating
the impact of ST self-phase modulation(SPM) on filament
formation, pulse splitting, and related phenomena[8]. The
role of the noise has been considered only in the context of
1D models. The aim of this work is that of providing experi-
mental evidence of the genuine hyperbolic feature of the
noise-seededMI in bulk, normally dispersive, optical sys-
tems. To this end we performed experiments and calculations
in which, a controlled, broadband noise is injected together
with the strong(quasi) plane and monochromatic pump into
the system.

The particular system that we have chosen to investigate
is the same as in Ref.[14], i.e., that of an optical WP shaped
as a large(with respect to diffraction), elongated beam and
long (with respect to dispersion) pulse that propagates in a
Xs2d nonlinear crystal tuned for second harmonic(SH) gen-
eration close to phase matching. For the chosen crystal
[lithium triborate, (LBO)] and wavelength[first harmonic,
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(FH), 1055 nm] the chromatic dispersion(see caption to Fig.
1 for details) is such that one should expect MI to take place
in the hyperbolic regime[9]. We performed numerical calcu-
lations in the frame of a two-dimensionals2Dd+1 model
integrating[via Fast Fourier transform(FFT), split step, and
Runge-Kutta algorithms, with up to 15-fs 6-µm grid and
40-µm step] the xs2d coupled-wave equations for FH and SH
envelopesEjsz,x,td,

L̂sv0dE1 + xE2E1
*exps− iDkzd = 0,

L̂s2v0dE2 + idV]tE2 + xE1
2expsiDkzd = 0, s1d

where L̂svd; i]z+f2ksvdg−1]xx
2 −fk9svd /2g]tt

2 , k9 is the
group-velocity dispersion (GVD), dV=k8s2v0d−k8sv0d
weighs the group-velocity mismatch(GVM), and Dk
=2ksv0d−ks2v0d. Figure 1 gives the calculated fluence(e.g.,
energy density) profile of the FH at the output of a 50-mm
crystal (top), together with the corresponding ST intensity
maps(bottom). Figures 1(a) and 1(d), which refer to noise-
free input, show the occurrence of a regular, highly con-
trasted, spatial breakup of the beam into a spatial-soliton
array, which appears as the consequence of MI seeding by
the deterministic wave-envelope modulation(WEM [14]).

When the ST noise is injected, WEM and noise-seeded
MI compete and the results are those shown in Figs. 1(b),
1(c), 1(e), and 1(f), where the input-noise bandwidth(BW) is
increased(from left to right) while keeping fixed the noise
intensity at 1% of the level of the pump. See how the impact
of the noise dramatically increases on enlarging its BW, ow-
ing to the unbounded instability. Note how the noise, instead
of deepening the spatial modulation(as it occurs in the frame
of the 1D+1 models[11]), quenches it almost completely.
The reason is the appearance of a “chaotic gas” of localized

ST structures[Fig. 1(f)], which gets washed out by the tem-
poral integration. It is worth pointing out that similar results
are obtained when keeping the bandwidth fixed and changing
the noise intensity.

In order to verify if the outlined catastrophic behavior is a
genuine physical effect or an artifact of the approximations
adopted, we performed a SH-generation laboratory experi-
ment in similar conditions to those which Fig. 1 refers to. To
this end, we used a strongly elongateds1000370 mmd, long
(1-ps) pump WP, as clean as possible from any spatial or
temporal substructure, provided by a chirped pulse amplifi-
cated(CPA) Nd:glass laser(TWINKLE, Light Conversion).
Then, we superimposed to the pump a weak, broad band-
width, ST noise, of controllable intensity, generated on a
separate channel by a broadband quantum-noise parametric
amplifier. For the noise generation we used a 15-mm LBO
crystal pumped by the SH of(a portion of) our pump pulse.
Both pump and noise WPs were launched synchronously into
a 50-mm LBO crystal, tuned for phase-matched SH genera-
tion. The spatial and temporal BWs of the noise field at the
input of the SH generator were 100 nm and 60 mrad, respec-
tively. Figure 2(top) shows the fluence distributions of the
FH beam at the crystal output facet as recorded by a charge-
coupled device(CCD) camera and suitable imaging optics.
The corresponding profiles(along the long axis of the beam)
are given in Fig. 2(bottom) for a more quantitative descrip-
tion. The results in the left, center, and right parts of the
figure refer to average noise fluence 0, 0.01%, and 0.1% of
that of the pump, respectively, for a fixed noise ST BW. The
resulting scenario fully confirms the model prediction. In-
deed, the noise-induced quenching of the WEM-seeded spa-
tial MI takes place in the experiment for a lower noise level
than in calculations, which indicates that the accessible BW
is even larger than the computational BW used for obtaining
the Figs. 1(c) and 1(f) results.

FIG. 1. Calculated space-time profiles(bottom) and corresponding integrated fluence profiles(top) for the fundamental harmonic
propagated in a 50-mm lithium triborate(LBO) crystal in regime ofDk=2ksv0d−ks2v0d=5 cm−1, in absence of noise(a and d), and with
two different kinds of noise:(b and e) 6 nm and 25 mrad,(c and f) 20 nm and 50 mrad of bandwidth. The intensity level of noise is 1%. The
input is a Gaussian FH WP with 1-ps FWHM duration, 600-µm FWHM beam width, and 40-GW/cm2 peak intensity. Calculations are
performed in the frame of a 1Dsspatiald+1Dstemporald+1Dspropagationd model. Asymmetry in the temporal coordinate is due to group-
velocity mismatch.
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The described,near-field, measurements have the obvious
limitation of confirming the model prediction only on the
basis of a time-integrated effect, the underlying ST structure
not being detectable by any technique. Moreover, both the
numerical and the experimental results that we have pre-
sented do not produce a direct evidence of the hyperbolic
nature of instability. In what follows, in order to overcome
these limitations, we illustrate the complementary,far-field
analysis, concerning the characterization of the angular spec-

tra (AS) of the generated field. Figure 3(a) contains the cal-
culated AS (i.e., the square modulus of the field Fourier
transform) of a FH profile analogous to that in Fig. 1(f) (see
the caption for details). The bright central spot corresponds
to the spectrum of the input pulse, while the surrounding
structure describes the amplified fluctuations. Note the evi-
dent hyperbolic shape of the instability region, which coin-
cides with the region where the calculated MI-gain profile is
the largest[9]. We verified that, no matter the size of the

FIG. 2. Measured fluence profiles(top) of FH WP recorded by a CCD camera at the output of the 50-mm LBO crystal, and(bottom)
corresponding beam profiles(note that the horizontal scales of images and profiles are not the same) in conditions:(a) and(d) with no noise;
(b) and (e) with noise intensity 0.01% of that of the pump;(c) and (f) with 0.1% of noise. The noise spatial and temporal BWs were,
respectively, of 60 mrad and 100 nm. The input pump intensity was 20 GW/cm2.

FIG. 3. (a) Calculated angular spectra(AS) of the FH field for operating conditions as those in Fig. 1(f), but for larger input-noise BW
(namely: 40 nm and 50 mrad); (b) zoom of(a) corresponding to the region of detection;(c) measured AS of the radiation exiting the crystal;
(d) measured AS of the input noise[intensity level multiplied by 50 with respect to Fig. 3(c)]. The gray colors refer to logarithmic scale.
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Fourier space, the instability always reaches the border of the
spectral box(in case of large enough noise BW), thus con-
firming the unbounded nature of the MI process in the frame
of the adopted model. For the far-field experiment, we mea-
sured the FH AS by placing the entrance slit of a large-
numerical-aperture imaging spectrometer at the focal plane
of a positive lens. The detected AS in the short-wavelength
branch of the spectrum(the long-wavelength one is not ac-
cessible due to sensitivity cut off of the silicon CCD detec-
tor) is reported in Fig. 3(c). The detected portion of the AS
(the radiation at large angles was clipped by the very narrow
aperture of our 333350 mm3 LBO crystal) exhibits a good
qualitative agreement with calculations[see the zoom in Fig.
3(b)] and confirms the genuine hyperbolic feature of the in-
stability process.

In conclusion, in the regime of second-harmonic genera-
tion with normal dispersion, by superimposing on an intense,
clean, pump wave packet and a weak spatiotemporal noise
(with coherence time much shorter than that of the pump) we
have shown that the noise-seeded MI develops in the spa-
tiotemporal domain. Due to the unbounded feature of the
instability, and so the large response of the system to white
noise, a noise as weak as 0.01% of the pump leads to
quenching of the spatial deterministic beam breakup and
spatial-soliton formation caused by wave-envelope modula-
tion. The analysis of the results in the spectral domain out-
lined the genuine hyperbolic feature of the instability, which
couples different frequencies to different angles. Because of
this coupling, the quenching of detectable spatial effects can-
not be simply interpreted as the averaging of several inde-

pendent spatial structures, occurring for different time slices
of the wave packet. As pointed out in[12], the typical(am-
plitude and phase) fluctuations that were triggering the insta-
bility in previous experiments(without external noise injec-
tion) were probably caused by laser beam, or optical-
component or nonlinear sample imperfections, thus leading
to a “frozen noise” with the same coherence time of the
pump (that virtually coincides with the pulse duration, all
lasers operating close to the transform limit). This might ex-
plain why the resulting instability was described in the frame
of monochromatic models. Finally, we expect that the de-
scribed, hyperbolic instability should play a dramatic role
when the field is strong enough to probe vacuum state fluc-
tuations, which indeed provide the source of a virtually
d-correlated noise. We expect that quantum-noise seeded hy-
perbolic instability should dominate not only theXs2d

parametric-amplification regime(as evident, for example, in
Ref. [15] and also in the more recent Ref.[16], but also the
classical, unseeded, second-harmonic generation process
and, possibly, the Kerr regime too. This might explain the
“spontaneous” quenching of spatial breakup seen at high
pumping in[12,14]. Owing to the unbounded nature of the
instability, the robustness of nonlinear dynamics of normally
dispersive media with respect to the interaction with the
quantum noise represents, therefore, a crucial issue which
deserves further investigation.
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